Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biol Reprod ; 93(5): 122, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26400398

RESUMO

TREK-1, an outward-rectifying potassium channel activated by stretch, is found in the myometrium of pregnant women. Decreased expression of TREK-1 near term suggests that TREK-1 may contribute to uterine quiescence during gestation. Five alternatively spliced TREK-1 variants were identified in the myometrium of mothers who delivered spontaneously preterm (<37 wk), leading to the hypothesis that these TREK-1 variants could interfere with TREK-1 function or expression. To investigate a potential role for these variants, immunofluorescence, cell surface assays, Western blots, and patch clamp were employed to study TREK-1 and TREK-1 variants expressed in HEK293T cells. The results of this study demonstrate that coexpression of TREK-1 with TREK-1 variants alters TREK-1 expression and suppresses channel function. Each variant affected TREK-1 in a disparate manner. In HEK293T cells coexpressing TREK-1 and each variant, TREK-1 membrane expression was diminished with compartmentalization inside the cell. When expressed alone, individual variants displayed channel properties that were significantly decreased compared to full-length TREK-1. In coexpression studies using patch clamp, basal TREK-1 currents were reduced by ∼64% (4.3 vs. 12.0 pA/pF) on average at 0 mV when coexpressed with each variant. TREK-1 currents that were activated by intracellular acidosis were reduced an average of ∼77% (21.4 vs. 94.5 pA/pF) at 0 mV when cells were transfected with TREK-1 and any one of the splice variants. These data correlate the presence of TREK-1 variants to reduced TREK-1 activity, suggesting a pathological role for TREK-1 variants in preterm labor.


Assuntos
Miométrio/metabolismo , Trabalho de Parto Prematuro/metabolismo , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Adulto , Processamento Alternativo , Estudos de Casos e Controles , Feminino , Células HEK293 , Humanos , Gravidez , Adulto Jovem
2.
Am J Physiol Cell Physiol ; 305(6): C632-42, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23804201

RESUMO

The mechanisms governing maintenance of quiescence during pregnancy remain largely unknown. The current study characterizes a stretch-activated, tetraethylammonium-insensitive K(+) current in smooth muscle cells isolated from pregnant human myometrium. This study hypothesizes that these K(+) currents can be attributed to TREK-1 and that upregulation of this channel during pregnancy assists with the maintenance of a negative cell membrane potential, conceivably contributing to uterine quiescence until full term. The results of this study demonstrate that, in pregnant human myometrial cells, outward currents at 80 mV increased from 4.8 ± 1.5 to 19.4 ± 7.5 pA/pF and from 3.0 ± 0.8 to 11.8 ± 2.7 pA/pF with application of arachidonic acid (AA) and NaHCO3, respectively, causing intracellular acidification. Similarly, outward currents were inhibited following application of 10 µM fluphenazine by 51.2 ± 9.8% after activation by AA and by 73.9 ± 4.2% after activation by NaHCO3. In human embryonic kidney (HEK-293) cells stably expressing TREK-1, outward currents at 80 mV increased from 91.0 ± 23.8 to 247.5 ± 73.3 pA/pF and from 34.8 ± 8.9 to 218.6 ± 45.0 pA/pF with application of AA and NaHCO3, respectively. Correspondingly, outward currents were inhibited 89.5 ± 2.3% by 10 µM fluphenazine following activation by AA and by 91.6 ± 3.4% following activation by NaHCO3. Moreover, currents in human myometrial cells were activated by stretch and were reduced by transfection with small interfering RNA or extracellular acidification. Understanding gestational regulation of expression and gating of TREK-1 channels could be important in determining appropriate maintenance of uterine quiescence during pregnancy.


Assuntos
Miócitos de Músculo Liso/metabolismo , Miométrio/metabolismo , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Adulto , Linhagem Celular , Feminino , Células HEK293 , Humanos , Potenciais da Membrana/fisiologia , Células Musculares/metabolismo , Miócitos de Músculo Liso/citologia , Miométrio/citologia , Potássio/metabolismo , Canais de Potássio/genética , Canais de Potássio/metabolismo , Canais de Potássio de Domínios Poros em Tandem/genética , Gravidez , Tetraetilamônio/metabolismo , Regulação para Cima , Adulto Jovem
3.
Analyst ; 137(20): 4815-21, 2012 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-22943048

RESUMO

A dual signal amplification technique was developed for bioassays. The technique consists of zinc-ion release from ZnS nanoparticle labels and enzyme kinetics activated by the released zinc ions as cofactors. In the ion release process, each ZnS nanoparticle label liberates a high number of zinc ions by acidic dissolution. After the ion release, at appropriate pH levels, the released zinc ions are used as cofactors to trigger the enzymatic activity of carbonic anhydrase. The fluorescence produced from the activated enzyme kinetics is measured for bioassay signal quantification. A model bioassay on mouse IgG adopting this technique presents a detection limit around 0.5 pM and a detection range over at least two orders of magnitude. This technique was also successfully applied to the detection of human cardiac troponin I (cTnI) in human serum samples to demonstrate a clinical diagnosis application. The developed immunoassay is capable of distinguishing clinically critical levels of cTnI. This technique possesses a high detection resolution and offers the advantage of straightforward operation (simple preparation of ZnS nanoparticles and no enzyme immobilization).


Assuntos
Anidrases Carbônicas/metabolismo , Nanopartículas Metálicas/química , Espectrometria de Fluorescência , Animais , Humanos , Concentração de Íons de Hidrogênio , Imunoensaio , Imunoglobulina G/análise , Íons/química , Cinética , Camundongos , Sulfetos/química , Troponina I/sangue , Zinco/análise , Compostos de Zinco/química
4.
Biosens Bioelectron ; 30(1): 342-6, 2011 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-22014622

RESUMO

C-reactive protein (CRP), a 115 kDa pentameric protein, is one of the important cardiac biomarkers that are indicative of coronary heart events. Sensitive detection of CRP in human serum is critical for the diagnosis of coronary heart disease. This work presents a sensitive sandwich immunoassay for the detection of CRP in human serum using zinc sulfide (ZnS) nanoparticles as novel fluorescence signal transducers. In this assay, monoclonal anti-CRP antibodies are used to capture CRP in human serum, and then the captured CRPs are incubated with biotinylated monoclonal anti-CRP and Neutravidin coated ZnS nanoparticle to form sandwich immunocomplexes. Quantification of CRP occurs when zinc ions released from ZnS nanoparticle labels are mixed with zinc-ion sensitive fluorescence indicator Fluozin-3 for fluorescence generation. The developed assay presents a detection limit around 10 pM and a detection range with more than two orders of magnitude.


Assuntos
Técnicas Biossensoriais/instrumentação , Proteína C-Reativa/análise , Doença das Coronárias/diagnóstico , Nanopartículas/química , Compostos de Selênio/química , Espectrometria de Fluorescência/métodos , Transdutores , Compostos de Zinco/química , Biomarcadores/sangue , Doença das Coronárias/metabolismo , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Sensibilidade e Especificidade
5.
Analyst ; 136(14): 2975-80, 2011 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-21643593

RESUMO

In this work, a fluorescence signal transduction mechanism based on cation release from ZnS nanocrystals was developed for sandwich immunoassay. In this mechanism, ZnS nanocrystals as labels in immunoassay are dissolved by acid to release zinc ions. After pH adjustment of the dissolving solution using a basic solution, zinc-ion sensitive fluorescence indicator Fluozin-3 is added to bind with the released zinc ions for sensitive fluorescence measurement. Using mouse IgG as a model analyte, the immunoassay adopting this signal transduction mechanism demonstrates a low detection limit around 1 pM and a detection range with two orders of magnitude (1 pM to 0.5 nM).


Assuntos
Imunoensaio/métodos , Nanopartículas Metálicas/química , Compostos Policíclicos/química , Sulfetos/química , Compostos de Zinco/química , Zinco/análise , Animais , Anticorpos/imunologia , Biotina/química , Concentração de Íons de Hidrogênio , Imunoglobulina G/química , Imunoglobulina G/imunologia , Nanopartículas Metálicas/ultraestrutura , Camundongos , Estreptavidina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...